Exemple de comment tracer un angle avec matplotlib de python:
Tracer les droites
import matplotlib.pyplot as plt
import numpy as np
m1, b1 = 0.1, 2.0 # slope & intercept (line 1)
m2, b2 = 2.0, -3.0 # slope & intercept (line 2)
x = np.linspace(-10,10,500)
plt.plot(x,x*m1+b1)
plt.plot(x,x*m2+b2)
plt.xlim(-2,8)
plt.ylim(-2,8)
plt.title('How to plot an angle with matplotlib ?', fontsize=8)
#plt.savefig("plot_an_angle_matplotlib_01.png", bbox_inches='tight')
Déterminer le point d'intersection entre les deux droites
x0 = (b2-b1) / (m1-m2)
y0 = m1 * x0 + b1
#plt.scatter(x0,y0, color='black' )
#plt.savefig("plot_an_angle_matplotlib_02.png", bbox_inches='tight')
Tracer un cercle
theta = np.linspace(0, 2*np.pi, 100)
r = np.sqrt(4.0) # circle radius
x1 = r * np.cos(theta) + x0
x2 = r * np.sin(theta) + y0
#plt.plot(x1, x2, color='gray')
#plt.savefig("plot_an_angle_matplotlib_03.png", bbox_inches='tight')
Déterminer les points d'intersection entre les droites et le cercle
x_list = []
y_list = []
def line_and_circle_intersection_points(m,b,x0,y0,r):
c1 = 1 + m ** 2
c2 = - 2.0 * x0 + 2 * m * ( b - y0 )
c3 = x0 ** 2 + ( b - y0 ) ** 2 - r ** 2
# solve the quadratic equation:
delta = c2 ** 2 - 4.0 * c1 * c3
x1 = ( - c2 + np.sqrt(delta) ) / ( 2.0 * c1 )
x2 = ( - c2 - np.sqrt(delta) ) / ( 2.0 * c1 )
x_list.append(x1)
x_list.append(x2)
y1 = m * x1 + b
y2 = m * x2 + b
y_list.append(y1)
y_list.append(y2)
return None
line_and_circle_intersection_points(m1,b1,x0,y0,r)
#plt.scatter( x_list[0], y_list[0], color='black' )
#plt.scatter( x_list[1], y_list[1], color='black' )
#plt.text( x_list[0], y_list[0], 'P1', color='black' )
#plt.text( x_list[1], y_list[1], 'P2', color='black' )
line_and_circle_intersection_points(m2,b2,x0,y0,r)
#plt.scatter( x_list[2], y_list[2], color='black' )
#plt.scatter( x_list[3], y_list[3], color='black' )
#plt.text( x_list[2], y_list[2], 'P3', color='black' )
#plt.text( x_list[3], y_list[3], 'P4', color='black' )
#plt.savefig("plot_an_angle_matplotlib_04.png", bbox_inches='tight')
Déterminer les angles pour chaque intersections
def get_point_angle(x,y,x0,y0):
num = x - x0
den = np.sqrt( ( x - x0 )**2 + ( y - y0 )**2 )
theta = np.arccos( num / den )
if not y - y0 >= 0: theta = 2 * np.pi - theta
#print(theta, np.rad2deg(theta), y - y0 )
return theta
theta_list = []
for i in range(len(x_list)):
x = x_list[i]
y = y_list[i]
theta_list.append( get_point_angle(x,y,x0,y0) )
Tracer les angles
theta_1 = theta_list[0]
theta_2 = theta_list[3]
theta = np.linspace(theta_1, theta_2, 100)
x1 = r * np.cos(theta) + x0
x2 = r * np.sin(theta) + y0
plt.plot(x1, x2, color='gray')
mid_angle = ( theta_1 + theta_2 ) / 2.0
mid_angle_x = (r+0.45) * np.cos(mid_angle) + x0
mid_angle_y = (r+0.45) * np.sin(mid_angle) + y0
angle_value = round( np.rad2deg(abs(theta_1-theta_2)), 2)
plt.text(mid_angle_x, mid_angle_y, angle_value, fontsize=8)
plt.savefig("plot_an_angle_matplotlib_08.png", bbox_inches='tight')
Code complet
import matplotlib.pyplot as plt
import numpy as np
m1, b1 = 0.1, 2.0 # slope & intercept (line 1)
m2, b2 = 2.0, -3.0 # slope & intercept (line 2)
#----------------------------------------------------------------------------------------#
# Step 1: plot the lines
x = np.linspace(-10,10,500)
plt.plot(x,x*m1+b1)
plt.plot(x,x*m2+b2)
plt.xlim(-2,8)
plt.ylim(-2,8)
plt.title('How to plot an angle with matplotlib ?', fontsize=8)
#plt.savefig("plot_an_angle_matplotlib_01.png", bbox_inches='tight')
#----------------------------------------------------------------------------------------#
# Step 2: calculate the point of intersection between the two lines
x0 = (b2-b1) / (m1-m2)
y0 = m1 * x0 + b1
#plt.scatter(x0,y0, color='black' )
#plt.savefig("plot_an_angle_matplotlib_02.png", bbox_inches='tight')
#----------------------------------------------------------------------------------------#
# Step 3: plot the circle
theta = np.linspace(0, 2*np.pi, 100)
r = np.sqrt(4.0) # circle radius
x1 = r * np.cos(theta) + x0
x2 = r * np.sin(theta) + y0
#plt.plot(x1, x2, color='gray')
#plt.savefig("plot_an_angle_matplotlib_03.png", bbox_inches='tight')
#----------------------------------------------------------------------------------------#
# Step 4: calculate the points of intersection between a line and the circle
x_list = []
y_list = []
def line_and_circle_intersection_points(m,b,x0,y0,r):
c1 = 1 + m ** 2
c2 = - 2.0 * x0 + 2 * m * ( b - y0 )
c3 = x0 ** 2 + ( b - y0 ) ** 2 - r ** 2
# solve the quadratic equation:
delta = c2 ** 2 - 4.0 * c1 * c3
x1 = ( - c2 + np.sqrt(delta) ) / ( 2.0 * c1 )
x2 = ( - c2 - np.sqrt(delta) ) / ( 2.0 * c1 )
x_list.append(x1)
x_list.append(x2)
y1 = m * x1 + b
y2 = m * x2 + b
y_list.append(y1)
y_list.append(y2)
return None
line_and_circle_intersection_points(m1,b1,x0,y0,r)
#plt.scatter( x_list[0], y_list[0], color='black' )
#plt.scatter( x_list[1], y_list[1], color='black' )
#plt.text( x_list[0], y_list[0], 'P1', color='black' )
#plt.text( x_list[1], y_list[1], 'P2', color='black' )
line_and_circle_intersection_points(m2,b2,x0,y0,r)
#plt.scatter( x_list[2], y_list[2], color='black' )
#plt.scatter( x_list[3], y_list[3], color='black' )
#plt.text( x_list[2], y_list[2], 'P3', color='black' )
#plt.text( x_list[3], y_list[3], 'P4', color='black' )
#plt.savefig("plot_an_angle_matplotlib_04.png", bbox_inches='tight')
#----------------------------------------------------------------------------------------#
# Step 5: calculate the angle for each intersection points
def get_point_angle(x,y,x0,y0):
num = x - x0
den = np.sqrt( ( x - x0 )**2 + ( y - y0 )**2 )
theta = np.arccos( num / den )
if not y - y0 >= 0: theta = 2 * np.pi - theta
#print(theta, np.rad2deg(theta), y - y0 )
return theta
theta_list = []
for i in range(len(x_list)):
x = x_list[i]
y = y_list[i]
theta_list.append( get_point_angle(x,y,x0,y0) )
#----------------------------------------------------------------------------------------#
# Step 6: plot the angle
theta_1 = theta_list[0]
theta_2 = theta_list[3]
theta = np.linspace(theta_1, theta_2, 100)
x1 = r * np.cos(theta) + x0
x2 = r * np.sin(theta) + y0
plt.plot(x1, x2, color='gray')
#----------------------------------------------------------------------------------------#
# Step 7: add label
mid_angle = ( theta_1 + theta_2 ) / 2.0
mid_angle_x = (r+0.45) * np.cos(mid_angle) + x0
mid_angle_y = (r+0.45) * np.sin(mid_angle) + y0
angle_value = round( np.rad2deg(abs(theta_1-theta_2)), 2)
plt.text(mid_angle_x, mid_angle_y, angle_value, fontsize=8)
plt.savefig("plot_an_angle_matplotlib_08.png", bbox_inches='tight')
Références
Liens | Site |
---|---|
Best way to plot an angle between two lines in Matplotlib | stackoverflow |
Intersection d'une droite et d'un cercle | ilemaths.net |
Equation du second degré | mathematiquesfaciles.com |
SECOND DEGRE | maths-et-tiques.fr |
Finding the Angle Between Two Vectors | wikihow |
numpy.arccos | docs.scipy.org |