Pour évaluer une fonction à deux variables en python, comme par example
\begin{equation}
f: (x_1,x_2) \rightarrow x_1 * \exp^{-(x_1^2+x_2^2)}
\end{equation}
le plus simple est d'utiliser la fonction numpy meshgrid.
Utiliser la fonction numpy meshgrid
Exemple
from pylab import figure, cm
import matplotlib.pyplot as plt
import numpy as np
def f(x1,x2):
return x1 * np.exp(-(x1**2+x2**2))
x1_min = -2.0
x1_max = 2.0
x2_min = -2.0
x2_max = 2.0
x1, x2 = np.meshgrid(np.arange(x1_min,x1_max, 0.1), np.arange(x2_min,x2_max, 0.1))
y = f(x1,x2)
Tracer la fonction avec imshow
On peut alors utiliser imshow pour visualiser le résultat:
plt.imshow(y,extent=[x1_min,x1_max,x2_min,x2_max], cmap=cm.jet, origin='lower')
plt.colorbar()
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.savefig("evaluate_2d_function_using_meshgrid_03.png", bbox_inches='tight')
plt.show()
On peut aussi tracer x1:
plt.imshow(x1, origin='lower', cmap=cm.jet)
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.colorbar()
plt.savefig("evaluate_2d_function_using_meshgrid_01.png", bbox_inches='tight')
plt.show()
plt.close()
ou x2
plt.imshow(x2, origin='lower', cmap=cm.jet)
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.colorbar()
plt.savefig("evaluate_2d_function_using_meshgrid_02.png", bbox_inches='tight')
plt.show()
plt.close()
Tracer avec la fonction matplotlib contour
On peut aussi utiliser contour
plt.contour(x1,x2,y,extent=[x1_min,x1_max,x2_min,x2_max], cmap=cm.jet, origin='lower')
plt.colorbar()
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.savefig("evaluate_2d_function_using_meshgrid_04.png", bbox_inches='tight')
Tracer en 3D
Pour visualiser en 3D, il existe plusieurs solutions, on peut par exemple utiliser la fonction contour3D:
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.contour3D(x1,x2,y, 100,cmap=cm.jet)
ax.view_init(60, 35)
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.savefig("evaluate_2d_function_using_meshgrid_05.png", bbox_inches='tight')
plt.close()
Code source
from pylab import figure, cm
import matplotlib.pyplot as plt
import numpy as np
def f(x1,x2):
return x1 * np.exp(-(x1**2+x2**2))
x1_min = -2.0
x1_max = 2.0
x2_min = -2.0
x2_max = 2.0
x1, x2 = np.meshgrid(np.arange(x1_min,x1_max, 0.1), np.arange(x2_min,x2_max, 0.1))
plt.imshow(x1, origin='lower', cmap=cm.jet)
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.colorbar()
plt.savefig("evaluate_2d_function_using_meshgrid_01.png", bbox_inches='tight')
#plt.show()
plt.close()
plt.imshow(x2, origin='lower', cmap=cm.jet)
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.colorbar()
plt.savefig("evaluate_2d_function_using_meshgrid_02.png", bbox_inches='tight')
#plt.show()
plt.close()
y = f(x1,x2)
plt.imshow(y,extent=[x1_min,x1_max,x2_min,x2_max], cmap=cm.jet, origin='lower')
plt.colorbar()
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.savefig("evaluate_2d_function_using_meshgrid_03.png", bbox_inches='tight')
#plt.show()
plt.close()
plt.contour(x1,x2,y,extent=[x1_min,x1_max,x2_min,x2_max], cmap=cm.jet, origin='lower')
plt.colorbar()
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.savefig("evaluate_2d_function_using_meshgrid_04.png", bbox_inches='tight')
plt.close()
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.contour3D(x1,x2,y, 100,cmap=cm.jet)
ax.view_init(60, 35)
plt.title("How to evaluate a 2D function using a python grid?" , fontsize=8)
plt.savefig("evaluate_2d_function_using_meshgrid_05.png", bbox_inches='tight')
plt.close()
Références
Liens | Site |
---|---|
meshgrid | docs scipy |
The glowing python | glowingpython |
Density and Contour Plots | jakevdp.github.i |
What is the purpose of meshgrid in Python / NumPy? | stackoverflow |
How to merge mesh grid points from two rectangles in python? | stackoverflow |