Exemple d'implémentation de l'algorithm du gradient ("gradient descent") en python pour trouver un minimum local:
Test avec une fonction à une dimension
from scipy import misc
import matplotlib.pyplot as plt
import numpy as np
#----------------------------------------------------------------------------------------#
# Function Definition
def fonction(x):
return 3*x*x+2*x+1
#----------------------------------------------------------------------------------------#
# Plot function
x = np.arange(-2.0, 2.0, 0.01)
y = fonction(x)
plt.plot(x, y,'r-')
#plt.show()
#----------------------------------------------------------------------------------------#
# Gradient Descent
alpha = 0.1 # learning rate
nb_max_iter = 100 # Nb max d'iteration
eps = 0.0001 # stop condition
x0 = 1.5 # start point
y0 = fonction(x0)
plt.scatter(x0, fonction(x0))
cond = eps + 10.0 # start with cond greater than eps (assumption)
nb_iter = 0
tmp_y = y0
while cond > eps and nb_iter < nb_max_iter:
x0 = x0 - alpha * misc.derivative(fonction, x0)
y0 = fonction(x0)
nb_iter = nb_iter + 1
cond = abs( tmp_y - y0 )
tmp_y = y0
print x0,y0,cond
plt.scatter(x0, y0)
plt.title("Gradient Descent Python (1d test)")
plt.grid()
plt.savefig("gradient_descent_1d_python.png", bbox_inches='tight')
plt.show()
Test avec une fonction à deux dimensions
from scipy import misc
import matplotlib.pyplot as plt
import numpy as np
import math
#----------------------------------------------------------------------------------------#
# Function
def fonction(x1,x2):
return - 1.0 * math.exp(-x1**2 - x2**2);
def partial_derivative(func, var=0, point=[]):
args = point[:]
def wraps(x):
args[var] = x
return func(*args)
return misc.derivative(wraps, point[var], dx = 1e-6)
#----------------------------------------------------------------------------------------#
# Plot Function
x1 = np.arange(-2.0, 2.0, 0.1)
x2 = np.arange(-2.0, 2.0, 0.1)
xx1,xx2 = np.meshgrid(x1,x2);
z = - 1.0 * np.exp(-xx1**2 - xx2**2);
h = plt.contourf(x1,x2,z)
#plt.show()
#----------------------------------------------------------------------------------------#
# Gradient Descent
alpha = 0.1 # learning rate
nb_max_iter = 100 # Nb max d'iteration
eps = 0.0001 # stop condition
x1_0 = 1.0 # start point
x2_0 = 1.5
z0 = fonction(x1_0,x2_0)
plt.scatter(x1_0,x2_0)
cond = eps + 10.0 # start with cond greater than eps (assumption)
nb_iter = 0
tmp_z0 = z0
while cond > eps and nb_iter < nb_max_iter:
tmp_x1_0 = x1_0 - alpha * partial_derivative(fonction, 0, [x1_0,x2_0])
tmp_x2_0 = x2_0 - alpha * partial_derivative(fonction, 1, [x1_0,x2_0])
x1_0 = tmp_x1_0
x2_0 = tmp_x2_0
z0 = fonction(x1_0,x2_0)
nb_iter = nb_iter + 1
cond = abs( tmp_z0 - z0 )
tmp_z0 = z0
print x1_0,x2_0,cond
plt.scatter(x1_0, x2_0)
plt.title("Gradient Descent Python (2d test)")
plt.savefig("gradiend_descent_2d_python.png", bbox_inches='tight')
plt.show()
Test avec une fonction à trois dimensions
from scipy import misc
import matplotlib.pyplot as plt
import numpy as np
import math
#----------------------------------------------------------------------------------------#
# Function
global x1_sphere
global x2_sphere
global x3_sphere
x1_sphere = 1.5
x2_sphere = 2.5
x3_sphere = 0.5
def fonction(x1,x2,x3):
r1 = x1 - x1_sphere
r2 = x2 - x2_sphere
r3 = x3 - x3_sphere
return r1*r1 + r2*r2 + r3*r3 ;
def partial_derivative(func, var=0, point=[]):
args = point[:]
def wraps(x):
args[var] = x
return func(*args)
return misc.derivative(wraps, point[var], dx = 1e-6)
#----------------------------------------------------------------------------------------#
# Plot Function
x1 = np.arange(0.0, 3.0, 0.1)
x2 = np.arange(0.0, 3.0, 0.1)
x3 = np.arange(0.0, 3.0, 0.1)
dim_x1 = x1.shape[0]
dim_x2 = x2.shape[0]
dim_x3 = x3.shape[0]
print dim_x1
z2 = np.zeros((dim_x1,dim_x2))
z3 = np.zeros((dim_x1,dim_x3))
for i in np.arange(dim_x1):
for j in np.arange(dim_x2):
r1 = x1[i] - x1_sphere
r2 = x2[j] - x2_sphere
r3 = 0.0 - x3_sphere
z2[i,j] = r1*r1 + r2*r2 + r3*r3
h = plt.contourf(x1,x2,z2)
plt.savefig("gradient_descent_3d_python_x1_x2", bbox_inches='tight')
plt.close()
for i in np.arange(dim_x1):
for j in np.arange(dim_x3):
r1 = x1[i] - x1_sphere
r2 = 0.0 - x2_sphere
r3 = x3[j] - x3_sphere
z3[i,j] = r1*r1 + r2*r2 + r3*r3
h = plt.contourf(x1,x3,z3)
plt.savefig("gradient_descent_3d_python_x1_x3", bbox_inches='tight')
#----------------------------------------------------------------------------------------#
# Gradient Descent
alpha = 0.1 # learning rate
nb_max_iter = 100 # Nb max d'iteration
eps = 0.0001 # stop condition
x1_0 = 0.0 # start point
x2_0 = 0.5
x3_0 = 0.0
z0 = fonction(x1_0,x2_0,x3_0)
plt.scatter(x1_0,x3_0)
cond = eps + 10.0 # start with cond greater than eps (assumption)
nb_iter = 0
tmp_z0 = z0
while cond > eps and nb_iter < nb_max_iter:
tmp_x1_0 = x1_0 - alpha * partial_derivative(fonction, 0, [x1_0,x2_0,x3_0])
tmp_x2_0 = x2_0 - alpha * partial_derivative(fonction, 1, [x1_0,x2_0,x3_0])
tmp_x3_0 = x3_0 - alpha * partial_derivative(fonction, 2, [x1_0,x2_0,x3_0])
x1_0 = tmp_x1_0
x2_0 = tmp_x2_0
x3_0 = tmp_x3_0
z0 = fonction(x1_0,x2_0,x3_0)
nb_iter = nb_iter + 1
cond = abs( tmp_z0 - z0 )
tmp_z0 = z0
print x1_0,x2_0,x3_0,cond
plt.scatter(x3_0, x1_0)
plt.title("Gradient Descent Python (3d test)")
plt.savefig("gradient_descent_23_python.png", bbox_inches='tight')
plt.show()
Références
Liens | Site |
---|---|
Algorithme du gradient | wikipedia |